[カテゴリー:問答の観点からの認識]
#二つの数学
前回述べたように、アインシュタインとカルナップは、公理的幾何学と実用幾何学を区別しています。カルナップは、(幾何学を除く)数学については、公理的数学しか認めていないだろうとおもいます。しかし、アインシュタインは、数学についても公理的数学と実用的数学の区別を認めています。
この二つの数学は次のように区別可能でしょう。公理的数学は、論理学の公理の集合をLとし、数学の公理の集合をMとするとき、L+Mの公理からなる公理体系であり、それらの語彙はヒルベルトのいう無定義術語ですが、その使用法は、その公理によって与えられています。物理学の公理の集合をPとするとき、物理学の理論は、L+M+Pの公理をからなる公理体系であり、その中での実用的数学の語彙の使用法は、L+M+Pの公理によって与えられています。
L+Mでの数学の語彙は、実在に関わりませんが、L+M+Pでの数学的語彙は、実在に関わっています。たしかに、L+Mでの数学の定理は、L+M+Pのなかでも変化しません。その定理は増えもしないし減りもしません。しかし、Pの中にも数学的語彙が使用されているために、数学的語彙は実在に関わっているのです。L+Mで実在と関係しない数学的概念や数式が、L+M+Pでは、実在に関わり、数式は、実在について妥当するように見えます。これはどうしてでしょうか。
数を数えるという行為は、特定の対象、例えばリンゴを数えなくても可能です。しかし、リンゴを数えるという行為は、数を数えるという行為なしには不可能です。リンゴを数えるという行為は、数を数えるという行為をいわば「内包」しているように見えます。それは、日常のものを数える行為から、数を数える行為が抽象されたためでしょう。これは、土地を測量する行為から、幾何学が抽象されたのと同様です。つまり、私たちがL+Mを獲得したあとに、Pを加えて、L+M+Pを獲得したのではなく、(当初は未分化の)L+M+Pから抽象によって、L+Mを獲得したのだと考えることによって、L+Mの数学概念や数式が、L+M+Pで、実在に関わり妥当するのかを説明できます。
発生的には Q1「リンゴ5個に7個を足せばいくつになりますか?」のような問いがまず生じ、そのような個数を問う多くの問答をかさねるなかで、Q2「5+7はいくつですか?」というような抽象化された問いが成立したのではないでしょうか。
これと同じことが論理学にも言えるでしょう。
#二つの論理学
二つの幾何学や二つの数学の区別と同様の区別が、論理学についても言えるでしょう。つまり、公理や推論規則を規約して、それらの意味論的規則によって真となる命題の体系、および妥当となる推論の体系を「公理的論理学」あるいは「純粋な形式論理学」とよび、他方で、現実の世界(自然や社会)で成り立っている論理的な関係の体系を「実用論理学」あるいは「実質論理学」として区別できるように思えます。
論理体系の公理の集合をLとし、数学の公理の集合をMとし、物理学の公理の集合をPとするとき、純粋な形式論理学の語彙の意味(使用法)は、Lによって与えられており、実質論理学の論理的語彙の意味(使用法)は、L+M+Pによって与えられています。
形式論理が現実世界で成り立つことは、幾何学や数論の場合と同様に、次のように説明できるでしょう。まずは日常生活での推論があり、その中での論理的語彙の使用があります(これブランダムが「実質推論」と読んだものに当たります)。形式論理は、現実世界(日常生活や科学)で成立しているこのような論理的な関係から抽象して作られたものであるから、現実世界で成立するのです。
ところで、論理体系には様々なものがあり、互いに両立しないものもあります。しかし私達は科学理論を考えるときにL+M+Pの中のLとして、ある特定の論理体系の公理の集合を選択しています。この選択がどのように行われるのかを、次に考えたいと思います。